
Journal of Statistical Physics, Vol. 63, Nos. 5/6, 1991 

A Stochastic Model of Three-Dimensional 
Crystal Growth 

Claude Garrod 1 

Received February 15, 1991 

This paper describes a stochastic model of crystallization from a gas or dilute 
solution. The model is limited to a crystal of rectangular symmetry whose 
surface has nonzero Miller indices. By a mapping into the modified K D P  
model, the kinetic growth coefficient can be given approximately as an analytic 
function of the Miller indices of the surface. Numerical simulations indicate that 
the aproximation is accurate within a few percent at all surface orientations. 

KEY W O R D S :  Crystal growth; six-vertex model. 

1. I N T R O D U C T I O N  

The study of crystal growth, from a macroscopic point of view, requires 
two basic parameters, the surface tension and the kinetic growth coefficient. 
Both parameters depend, in general, upon temperature, pressure (to a 
lesser extent), and the orientation of the crystal surface with respect to the 
fundamental crystal planes. One of the objects of microscopic studies of 
crystal growth is the calculation of those two parameters from a reasonable 
microscopic model of the crystal growth process. The surface tension, being 
an equilibrium property, has received the most detailed and successful 
study. In this paper, I will focus on the orientation dependence of the 
kinetic growth coefficient, to be defined below. 

2. DEFINIT ION OF THE M O D E L  

We consider a crystal of simple cubic symmetry. (The generalization of 
the analysis to the case of rectangular symmetry is completely trivial.) If we 
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cut the crystal with a plane that does not contain any primitive lattice 
vector, remove all particles above the plane, and assume that no surface 
reconstruction takes place, then we are left with a crystal surface of the 
general structure shown in Fig. 1. We replace the discarded portion by a 
gas with which the crystal continuously exchanges particles. In the 
configuration shown in Fig. 1 the most energetically favorable vacant sites 
are clearly the inside corners with three nearest neighbors. We call them 
condensation sites and assume that any particle condensing onto the 
surface either condenses directly into a condensation site or rapidly makes 
its way to one. Thus the crystal adds particles only at condensation sites. 
We assume that the condensation events at different sites are statistically 
independent and that the probability of a site being filled during time 
interval dt is C dt, where C is proportional to the flux of particles from the 
gas, the proportionality constant being some function of the temperature. 
Since the flux is proportional to the gas pressure we can write C in terms 
of the pressure as 

C=O(T)P  (1) 

The most weakly bound of the occupied sites are outside corner sites with 
three nearest neighbors. We call these evaporation sites and assume that 
particles are lost only from evaporation sites at a rate of E per site, where 
E is a function of temperature only, 

E = ~b(T) (2) 

The detailed solution of the problem will verify the unsurprising fact 
that the condition for equilibrium is that C = E. At equilibrium the gas 

C E 
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/ 

Fig. 1. The model of the crystal surface used in this paper. It is commonly referred to as the 
terrace-ledge-kink model. Inside corner sites are condensation sites and outside corner sites 
are evaporation sites. 
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pressure must be equal to the two-phase equilibrium pressure Pe(T). This 
gives a relation between r and ~b, 

O(T) = O(T) P~(T) (3 

Away from equilibrium, the growth rate G, defined below, is given by 

G = N c O P -  N E a P  e (4) 

where G is the net rate at which particles are added to the crystal per unit 
area and Nc  and Ne  are the average numbers of condensation and 
evaporation sites per unit area, all areas being measured on the surface of 
the crystal. For small values of AP = P -  pe we can expand Eq. (4) to first 
order in AP, using the fact that N c = NE at equilibrium: 

3(Nc - NE) 
G=ON~cAP+OPe  OP AP (5) 

In Section 8 we shall show, by means of numerical simulations, that 
the second term on the right is never more, than 4% of the first term for 
any orientation of the surface. If we drop that term and use the 
thermodynamic relation (3P/O#)T=I/v(P, T),v being the volume per 
particle in the gas, we obtain 

G = ~ N e A# (6) ve C 

where, of course, A# is the difference between the actual chemical potential 
of the gas and the equilibrium value of # at temperature T. 

The kinetic growth coefficient K, defined as the ratio of G to A#, is 
then given by 

K=O--N e (7) /)e C 

We have no way of determining the function O(T). Our aim in this 
paper is to compute Nc,  which is a function of the surface orientation. We 
shall then have related the kinetic coefficient at one surface orientation to 
that at any other at the same temperature. This means that, if we watch an 
initially cubic sample dissolve, the sequence of shapes it passes through are 
predictable by this theory, but the rate at which it evolves from one shape 
to another, being dependent on the function O(T), is not. 
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3. M A P P I N G  TO A S I X - V E R T E X  M O D E L  

For convenience, we shall take the lattice spacing as our unit of length. 
A contour plot of the crystal surface, obtained by drawing a path in the 
x - y  plane along the ledge at each height z = n, gives a series of paths that 
go either to the right or up and that may coincide (indicating a ledge of 
height greater than one), but never cross. The no-crossing rule is a 
consequence of the fact that the assumptions of the model prevent the 
creation of overhangs. An example is shown in Fig. 2. The orientation of 
the surface is determined by the average linear densities of paths cutting 
the x and y axes, which we call Dx and Dy, respectively. In interpreting 
the diagram we assume that the elevation of the surface increases in the 
-negative x and positive y directions. Then the orientation of the surface is 
given by Oz/#x = - D  x and Oz/Oy = Dy.  

To map the set of diagrams allowed by the "no-crossing" rule into the 
diagrams of a six-vertex model we make the following transformation. We 
number Me paths with an integer K, equal to the z coordinate of the ledge. 
We then move the Kth path K units up and K units to the left. With this 
transformation the "no-crossing" diagrams are mapped one-to-one into the 
set of diagrams that satisfy a "no-touching" rule. The densities of path 
crossing the x and y axes in the new representation are dx amd dy, where 

d x = D x / ( l + D ~ , + D y ) ,  d ~ = D y / ( l + D x + D y )  

The inverse transformation, which we will need later, is 

D~ = d~/(1 - d~ - dy), Dy = dy/(1 - dx - dy) 

6 5 
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Fig. 2. A view of the crystal surface along the z axis. The numbers give the z coordinates of 
the "terraces." 
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It is convenient  to calculate  at  this point ,  for subsequent  use, how 
surface areas  t ransform under  this t ransformat ion .  In  Fig. 3a a sect ion of 
the crysta l  surface is shown tha t  intersects  the x, y, and  z axes at points  a, 
- b ,  and  c, respectively. The  area  of that  piece of surface is S o =  
�89 - b2c2) 1/2. After the t ransformat ion ,  that  area  is t rans formed 

into the t r iangle  shown in Fig. 3b, which has area  $1 = �89 + ac + bc). In 
terms of the Mil ler  indices of the surface 2 (k, l, m )  = _ (be, ac, ab) we get 
S J S o  = ( k +  I+  m ) / ( k  2 + l 2 -{- m2) 1/2. W h a t  is no tewor thy  is tha t  the t rans-  

formed area  is clearly independen t  of which axis is chosen as the z axis in 

2 Actually, (k, - l ,  m) are the Miller indices of the surface, as they are usually defined. 

Fig. 3. 
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(a) A portion of the crystal surface in three dimensions. (b) The projection of that 
portion on the x-y plane after the transformation described in the text. 
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making the transformation, even though, once an axis is chosen, the 
geometry of the transformation is quite unsymmetrical. 

In order to avoid edge effects, we shall consider an infinite system with 
uniform macroscopic orientation. However, to make the model more 
precise, the infinite system will be obtained as the limit of a finite system 
with periodic boundary conditions. We therefore consider an N x N lattice 
with a number of paths drawn on it that go only up or to the right. If a 
path exits the lattice on the right, then one enters at a corresponding 
position on the left and the same is true with respect to the top and 
bottom. A possible configuration of a 5 x 5 lattice is shown in Fig. 4a. The 
five possible vertex configurations are shown in Fig. 4b. The numbering 
conforms with the usual numbering of the vertices in the well-known six- 
vertex model. (~/The allowed configurations in our "five-vertex" model are 
equivalent (by an exchange between blank and filled lines) to the allowed 
configurations of a particular six-vertex model, the modified K D P  model, 
introduced by Wu. (2~ This maping to the modified K D P  model has 
previously been used by B16te and Hilhorst to study the equilibrium 
properties of the crystal surface model used here. (3/ 

4. STEADY-STATE PROPERTIES 

Before launching into the mathematical details of the solution of the 
model, we want to establish certain general properties of the model's 
dynamics. We define a (61) plaquette as any square with a six-vertex in the 
upper left-hand corner and a one-vertex in the lower right-hand corner. A 
(25) plaquette is defined in an obvious corresponding way. On our periodic 

Fig. 4. 
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(a) A possible configuration of the transformed lattice. (b) The numering of the five 
allowed vertices. 
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N x N lattice there is a stochastic process operating that randomly converts 
(61) plaquettes to (15) plaquettes at a rate C and makes the inverse 
transformation at a rate E. If we let Nx be the number of paths cutting any 
horizontal line through the lattice and Ny be the same thing for a vertical 
line, then Nx and ivy are obviously conserved by the stochastic process. We 
can thus consider separately sets of configurations that have fixed values 
for N~ and Ny. It is also obvious that the values of d,  and d~ are fixed in 
the thermodynamic limit by having Nx/N--* dx, and Ny/N ~ dy. From now 
on, an "allowed" configuration implies definite values of Nx and Ny. The 
following theorem establishes the steady-state ensemble for a finite lattice 
under the equilibrium condition, C = E. 

T h o o r o m .  For  C = E  the steady-state ensemble assigns equal 
probability to every allowed configuration. 

Proof. Let us denote the allowed configurations by letters 
a, b ..... P(a, t) is the probability of finding the system in state a at time t; 
P(a, t) will satisfy a master equation of the form 

P(a) = -P(a)  ~ T(a --* b) + ~ P(b) T(b --, a) 
beSa b=/=a 

==-~ T(alb)P(b) (10) 
b 

For fixed a, T(b ~ a) will be C (or E) if configurations b and a differ 
by a single condensation (or evaporation) event. Thus, if T(b--,a)= C, 
then T(a ~ b)= E. This means that the diagonal element T(a[a) is equal to 
the negative of the sum over b of the off-diagonal elements T(al b) with C 
and E interchanged. If C = E, then the sum of the elements in each row of 
T(a[b) is zero. The condition for a steady-state solution is that P(a) be a 
null vector of T(a[b). Obviously, a vector with equal coefficients is a null 
vector of a matrix whose rows all have zero sum. 

5. T R A N S F O R M A T I O N  TO A D IMER PROBLEM 

Our aim is to calculate the density of (61) plaquettes as a function of 
the parameters dx and dy. Because of the symmetry exploited in the proof 
of the theorem, the density of (~5) plaquettes is equal to the density of (61) 
plaquettes at equilibrium. The density of (61) plaquettes is an element of the 
two-point density function for next-nearest neighbors. We shall calculate it 
by making a transformation, introduced by F.Y. Wu, to a somewhat 
simpler dimer problem on a hexagonal lattice. In Fig. 5 a hexagonal dimer 
lattice is superimposed on the square lattice of our model. The rules that 
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Fig. 5. 
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The superposition of a hexagonal dimer lattice onto the square lattice. 

define the allowed configuations of a dimer lattice are that every [ink (line 
between two nearest neighbor vertices) may be occupied by a dimer 
(indicated by heavy line) or it may be unoccupied. Every vertex must be 
the terminal point of exactly one dimer. If we identify the nearly vertical 
(or horizontal) dimers on the hexagonal lattice with vertical (or horizontal) 
paths on the square lattice, it is easy to see that the allowed dimer 
configurations are mapped one-to-one into the allowed path configurations 
on the square lattice. We index the plaquettes and the corresponding 
hexagons by two integers (x, y), which are just the coordinates of their 
upper left-hand corners. If the plaquette (x, y) is a condensation site, then 
the dimer configuration of the corresponding hexagon is as shown in Fig. 6. 
The density of such dimer configurations is a certain three-point correla- 
tion function on the dimer lattice which we can calculate as follows. 

6. GENERAL F O R M U L A S  FOR THE 
CORRELATION F U N C T I O N S  

We number the links of a finite dimer lattice, in an arbitrary way, from 
1 to K. To the ith link we assign an energy v, and an occupation number 
Ni, which can take the values 0 or 1. The allowed configurations of the 
lattice are denoted by the symbol C. The energy of configuration C is a 
sum of the energies of the occupied links 

K 

E ( C ) =  ~ N~(C)v, (11) 
z = l  
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.............. sii ................. ? ................................... 1 "  Vxy 

Fig. 6. The naming of the Boltzmann weights and the vertices on the hexagonal 
dimer lattice. 

The partition function is given by 

Z=~ceXp( -~Niv i  ) (12) 

The probability of configuration C is assumed to be 

P(C) = exp[ -E(C)]/Z (13) 

The one-, two-, and three-point distribution functions are defined by 

F(i)=~cNi(C)P(C)=~cNiIexp(-~Njvj )] /Z  (14) 

F(i , j )=~N~NjP(C)=~N, N j [ e x p ( - ~ N k v ~ ) ] / Z  (15) 
C C 

and 

C C 

F(i, j, k) is the probability that links i, j, and k are simultaneously 
occupied. If we define the potential ~2 = log Z, then 

8Q F(i) = - - -  
Ovi 

~2Q 

F(i, j) By, Ovj + F(i) F(j) 

(17) 

(18) 
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and 

F(~, j ,  k )  - 
830 

Ov~ ~vj 8v~ + F(i, j) F(k) + F(i, k) F(j) 

+ F(j, k) F(i) - 2F(i) F(j) F(k) (19) 

7. THE  B O L T Z M A N N  W E I G H T S  

If, for the horizontal, slanted, and vertical dimers at square vertex 
(x,y), we assign the Boltzmann weights H~y=exp(-h~y), S~y= 
exp(-Sxy), and V~y = exp(-vxy), respectively, then the partition function is 
equal to the square root of the determinant of the 2N 2 by 2N 2 matrix 
M(x, y, a lx', y', a'), where x, y, x', y' go from 0 to N and or, o-' go from 1 
to 2. The value 0 is identified with the value N in order to make the system 
periodic in x and y. The matrix elements of M(x, y, a lx', y', a') are given 
by the formulas (see Fig. 6) 

M(x, y, 1 I x, y, 2) = -M(x ,  y, 2Ix, y, 1) = Sxy (20) 

M ( x - l , y ,  2lx, y, 1)= - M ( x , y ,  l j x - l , y ,  2)=Hxy (21) 

M(x,y,  2lx, y + l ,  1)= - M ( x , y + l ,  llx, y, 2)=gxy (22) 

For the "unperturbed" case S, H, and V are constants (independent of 
x and y). In order to evaluate the distribution functions we shall have to 
perturb some of them infinitesimally. The unperturbed matrix we call M o. 
Then 

log(det M ) =  �89 tr(log M) (23) 

We let 

M = M o + A  = Mo+ A1 + A2+ A3 

where the nonzero elements of A~, A2, and A3 are 

(24) 

A,(1, O, 111, O, 2)=-Al(1 ,0 ,211,  O, 1)~el=OSIo (25) 

A2(0, 0, 210, 1, 1)= -A2(0, 1, 110, 0, 2)~a2=6Voo (26) 

A3(0, 1, 2k 1, 1, 1)= -A2(1, 1, 1[0, 1, 2 ) -z~3=6H u (27) 

These perturbations will allow us to calculate the probability of 
getting a condensation site at (x, y)--(0,  1). We calculate the perturbed 
potential as follows: 

M = M o + A = M o ( I + B ) ,  where B=Mo~A (28) 
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Thus, 

s = �89 tr(log M) = s + �89 tr[log(1 + B)] (29) 

We can use the expansion 

log(1 ~- B) = B -  192 -t- 193 -~ -.- (30) 

to obtain t2 as a power series in e~, e2, and e3. 
We transform all matrices to a "momentum representation" by 

1 
M(k,  l, erlk', l', a')=N--- 5 ~ e-'(k~+lY)M(x, y, a lx ' ,  y', a')e i(k'x'+t'y'l 

~'Y'~"Y' (31) 

where k,/, k', and l' take the values 2rcK/N with K = 0 ..... N -  1. In the k, l 
representation 

with 

Mo(k, l, ~r j k', l', a') = 6kk,6H,mkl(a ] a') 

mkl= -- S + Ve iz + He ik 0 = -- ~ l  

In this representation M o ~ = 6kk' 6zt' m~ l(a I a'), where 

m~l=[1/0#k ' --lo//~*t]=_[7Ok,--~2~l] 

and A~, A2, and A 3 have the forms 

(32) 

(33) 

(34) 

Al(k , l ,  a lk ' , l ' ,a ' )=elN-2e '~k ' -k) (6 ,~ ,16~,2-6~,26,<l)  (35) 

- e  it6 ~',2) (36) A2(k, l, a lk', l', a ' )= ezN-2(eir6o,26~,,1 ~,l 

and 

A3(k, l, a lk ' ,  l', a')=e3N-2(ei~k'+r-t~6o,26~,,1--e ~k+t-r~6~,16~,,2 (37) 

Multiplying A1, A2, and A3 by M o  1, we get 

01 ~ A7 2oi(k' k ) (~ , ,  ,.~ .~ , , =~1", ~ ~rklv~,lv~'l+Tk~6~26~,2) (38) 

O2 = - 2  , it' q- 7kl  e i l6~ 2g~r  ' 2 )  (39) - - g z N  ( T k l e  6 ~ , 1  6,~, 1 , . 

and 
B 3  o AT 2( ,~* .9 i (k '+l ' - l ) . .g  .~ = - - o 3 " '  ~,lkl ~ t - ' a , l  v a ' , l  + ~kle - - i (k+l - - l ' ) (~a ,2(~a , ,2 )  (40) 

822/63/5-6-13 
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We now have to calculate the product matrices B 1 . B 2 = - - B 1 2  , 

B1 �9 B2 �9 B3 - B~23, etc. Before we do so we define certain functions that will 
appear in the calculations: 

f l ( a, b, c) = ~ dk dl a -  be i t -  ce *k 

;• f ~rc C ik 
f2(a, b, c) = '~ dk dl a -  be i l -  ce ik 

;• ;~= el(l--k) 
f3(a, b, c) = '~ dk dl a -  be il - -  ce ik 

With these definitions we get 

B12(k, l, a lk ' ,  l', a ' ) =  - - -  

921  m 

9 1 3  - 

931 - 

923  - 

B32 - 

B123 - - -  

(41) 

(42) 

(43) 

g l g 2  
4/t2N2 [f2(S, V, H)'*U'-k)~'* X a~,,l 

+ f3(S, V, H)  e-ikyela~,2fi~, 2] (44) 

g l ~ 2  
e Yk-10a, 1 ~Sa, 1 4rc2N2 [f3(S, V, H) ,k' . 

+ fz(S ,  V, H)ei{k'-l)7ktao-,za<2] (45) 

/31 '~3 l_ii~i(k'+l' k)~,. .~ ,~ 
4a:ZN 2 If3( S' 12", , ,  ,~ rkl~'~,lv,~' 1 

+ f2(S, H, V)ei(l'--k)YklCSa, a~Sa,,2 ] (46) 

/31/33 
4~2N 2 [-f2(S, H, V)e '{k' /)7~6o,16~,1 

+ f3(S, V, H)e  i(k'-k l)Tkl(~a, 2(~a, 2 ~ (47) 

/32/33 
[-f~(S, V, H)ei~k' +r)7*16~,16<l 

4 ~ 2 N  2 

+f3(S, V, H)e'{r-07k, CS~,26o-, 2 ] (48) 

/32/33 
4rc2N2 [f3(S,  V, H)e  i{l' ik'*~,klV,r, ~ 1~5o-',1 

+ f~(S, V, H)e~{k +O7k,6~,26<2] (49) 

gig2/33 [f~(S, V, H)  f2(S, V, H ) e  *{k'+r-k)~'* a "~ ~' kl~ q, 1 t" o", i 16rc4N 2 

+ f3(S, V, H) f3(S, V, H)e~"-k)Tk,a~,2a<2] (50) 
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and 
818283 

B13 2 -  16~4N2 [f3(S, V, H) f3(S, V, me'~"-%~,a~16<l 

+L(s, v, H)re(S, 14, V)e-'%,a~,2a~,2] (51) 

The integrals defining f l ,  f2, and f3 can be evaluated by standard 
contour integration techniques. If we assume that a, b, and c form a 
triangle (a condition that will be true within our physical parameter space), 
then 

f,(a, b, v )=  41r 0a (52) 
a 

f2(a, b, c ) =  _ 4___~ 0~. (53) 
and c 

4~ 
f3(a, b, c) = - - -  sin 0~ (54) 

a 

where Oa, Oh, and 0~. are the angles opposite the sides a, b, and c in the 
triangle with those sides. Note that, by the law of sines, f3 is symmetric in 
a, b, and c. 

We can now calculate all the traces needed in the power series expan- 
sion given by Eqs. (29) and (30). They are 

tr(B1) = ~ f~(S, V, H) = 28~ 0s (55) 
~S ATe- 

82 2820v (56) 
t r ( B 2 ) -  f-~g5f2(S, H, V)= 7C~ 

tr(B3) = fZ3_2f2(S , V, H) = 2830H (57) 
z~ ~H 

8182 
tr(B12) - ~ f2(S, V, H) f3(S, V, H) = 

8183 
t r (B13)-  ~Tan4 f2(S, H, V) f3(S, V, H)= 

8283 tr(B=~)---7-z A(S, v, H)A(S, v, H)= ~ '  

2ele20,  sin Ov 
~2HV 

281830 v sin 0 ,  
~2HV 

2~2830 S sin Os 
7~2S 2 

(58) 

(59) 

(60) 

tr(B123) -- 
g182/;3 [f~(S, V, H) f2(S, V, H) f2(S, H, V)+ f~(S, V, H)]  
64n 6 

818283 O s O v O  H - -  sin 0 s sin Ov sin 0 .  
- tr(B132) n 3 SVH 

= - -  (61) 
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We now have all the machinery necessary to calculate the derivatives 
of f2, which, by Eqs. (17)-(19), will yield the needed distribution functions. 
The one-point distributions, for slanted, vertical, and horizontal dimers, 
respectively, are 

0s af2 0 s (62) 
. . . .  s - = -  

c~Slo Og 1 ~ =o = -  

and 

c~(2 ~ = o = 0 ~  F(v) = V ~  (63) 

F(h) = HcLQ =--0H (64) 
~t;3 ~ = o  rc 

In the expressions F(s), F(v), and F(h), the symbols s, v, and h are 
being used to indicate the slanted, vertical, and horizontal links, not the 
energy values on those links. 

The other important distribution function is the threepoint distribu- 
tion function, F(s, v, h). After some algebra, we obtain 

F(s,v,h) ~ 3(SsinOvO~+HsinOsOZv V . = + s m  0H0  

- sin Os sin Ov sin O H + 20sOvOH) (65) 

This gives the probability that a given plaquette is a condensation site. 
It can be expressed as a function of the Miller indices of the surface as 
follows. If we draw a line in the x direction that lies between two rows of 
vertices, then the density of paths cutting that line is equal to F(v). Thus, 
dx= F(v)= Ov/~Z and, in a similar way, dy =-F(h)= OHIO. From Eq. (8) and 
Fig. 3a we can derive the following relations between d~ and dy and the 
Miller indices (k, l, m): 

k I 
= - -  and dy k + l + m dx k + l + m  

From these it follows that 

k~ (66a) O v - k + l +  m 

In (66b) OI~-k+l+ m 

m / z  
Os - k (66c) +l+m 
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These three equations allow us to eliminate the variables S, V, and H 
in favor of the Miller indices of the surface. Only the ratios of Miller indices 
have significance. Therefore, we are free to impose the restriction that 
k + l + m = 1 and will do so henceforth. A three-dimensional graph of F as 
a function of D x and Dy is given in Fig. 7. 

Since we are using units in which the lattice constant is unity, F(s, v, h) 
gives the density of condensation sites on the x - y  plane. To compute the 
kinetic coefficient, by Eq. (7), we must transform to area on the crystal 
surface. The result is given by 

~,(r) r(s, v, h) 
K =  re(T) (k 2 + 12 + m2)1/2 (67) 

One sidelight of this analysis is that it, in a sense, explains a peculiar 
symmetry of the modified KdP  model. Because of the sixfold rotational 
symmetry of the hexagonal lattice it is clear that the partition function is 
invariant with respect to permutations of the variables S, V, and H. A 
threefold symmetry is somewhat unnatural for a two-dimensional square 
lattice model. It is easy to see that this symmetry simply reflects the natural 
invariance of the condensation site density N c  with respect to permutation 
of the coordinate axes x, y, and z. 

Fig. 7. The function F(s, v, h), which gives the fraction of plaquettes that are condensation 
sites, as a function of Dx and Dy, 
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8. N U M E R I C A L  S I M U L A T I O N  

In this calculation we have neglected the second of the two terms in 
Eq. (5) for the growth rate as a function of the pressure imbalance. In order 
to determine the relative size of the neglected term I have performed 
numerical simulations of the crystal growth for finite lattices at various 
orientations and various values of C and E. Using Eqs. (1)-(3), we can 
rewrite Eq. (5) in the form 

G=O(N~c+O(Nc-NE)) A P s e  (68) 

where e = (C- E)/E. The value of N~ is known, as a function of orienta- 
tion, from the exact solution. The second term can be easily ascertained by 
numerical simulation of nonequilibrium growth. First it may be noted that, 
for any orientation that is close to a principal plane, the ledges are widely 
separated and therefore a treatment of them as noninteracting ledges would 
be appropriate. But, for any isolated ledge, the number of condensation 
sites is exactly equal to the number of evaporation sites and the neglected 
term is therefore zero. 
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Fig. 8. A comparison of the analytic approximation with the results of numerical simulation. 
The curve gives F(v, h, s) as a function of the ratio of 0 v to ~/3 for the special case Ov = O H. 

The points are the results of four numerical calculations. 
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The simulation of a stochastic process on a finite lattice is a 
straightforward matter. The correctness of the program and the errors due 
to finite-size effects and statistics can be determined by taking runs with 
C = E and comparing the numerical results for F(s, v, h) with Eq. (65). If 
the unknown functions ~(T) and •e(T) are  taken to be unity, then Eq. (67) 
says that 

F(s, v, h) = (k 2 q- l 2 q- m2)l/2K (69) 

In Fig. 8, a graph of F for the case Ov = 01t is given as a function of Ov for 
the range 0 < Ov < ~/3 and compared with four values of (k 2 + 12 + mZ)1/ZK 
obtained by simulating nonequilibrium growth. The size of the numerical 
data points gives an estimate of their accuracy. Their deviation from the 
analytic curve is due primarily to the neglected second term in Eq. (5). The 
error is always less than 4 %. 
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